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Abstract ampus. The data resulting from MRI or CT scanning of the

Searching a database of 3D-volume objectsfor objectswhich are patient are multiple layers of images (cf. Figure 1a) which
similar to a given 3D search object is an important problem can be segmented (cf. Figure 1b) and then combined into
which arises in number of database applications — for example, 5 voxel-based 3D representation (cf. Figure 2). Note that
in Medicine and CAD. In this paper, we present a new geometry- o nqsition of the patient is fixed in taking the MRI or CT

based solution to the problem of searching for similar 3D-vol- . d theref anifi lati .
ume objects. The problem is motivated from a real application in Images and therefore, no significant translation or rotation

the medical domain where volume similarity is used as a basismay occur. Depending on the determined volume, the hip-
for surgery decisions. Our solution for an efficient similarity pocampus is then completely removed by brain surgery.
search on large databases of 3D volume objects is based on a new|though this procedure is the best medical doctors are
geometric index structure. The basic idea of our new approach isyp|e to provide for the time being, there is a serious need

to use the concept of hierarchical approximations of the 3D ob- for a more thorouah analvsis of the hiopocampus and the
jects to speed up the search process. We formally show the cor- ug ysi PP pu

rectness of our new approach and introduce two instantiations ofvolume defects that cause epilepsy. The observation of
our general idea, which are based on cuboid and octree approxichildren with a large hippocampus but no epilepsy leads to
mations. We finally provide a performance evaluation of our the hypothesis that the shape of the deformation may indi-
new index structure revealing significant performance improve- -gte the defect. In first studies, initial support for this hy-

ments over existing approaches.

1 Introduction

Searching a database of 3D objects for objects which are
similar to a given 3D search object is an important prob-
lem. The problem arises in a number of applications such
as CAD and Medicine. Since our motivation for the work
presented in this paper comes from a cooperation with a
radiological clinic, inthefollowing we briefly describethe
background. The specific medical application of our part-
nersin medicine is epilepsy of children. The current med-
ical theory of epilepsy of children assumes that an irregu-
lar development of a specific portion of the brain called
the hippocampus is the reason for epilepsy. In several
studies, it has been observed that epilepsy only occurs
with children whose hippocampi are significantly larger
than the average hippocampus of healthy children. On the
other hand, it has been found that there also existsa signif-
icant number of children which have large hippocampi but
do not develop epilepsy.

The current medical practice is to use the available mag-
netic resonance imaging (MRI) and computer tomography

(CT) data to determine the volume of the patient’s hippoc-

pothesis has been collected. For a thorough analysis, how-
ever, a large number of hippocampi has to be examined
and their shapes have to be compared. Using a database of
hippocampi, the deformations that lead to epilepsy can be
better understood and the surgery can hopefully be im-
proved, e.g., by only removing the affected portions of the
hippocampus. A more immediate goal, however, is to use
the database to search for similar cases and make the sur-
gery decision based on the outcome of this search. This al-
ready would largely improve the decision process and
help to avoid unnecessary surgeries. Although our work is
motivated by a rather specific medical application, the
problem of finding all objects from a database of 3D ob-
jects which are similar to a given 3D object is a general
problem which arises in many application areas such as
CAD, pattern recognition, and others.

It is widely recognized that 3D similarity search is a diffi-
cult problem — by far more difficult than the 2D similarity
search. Database technology does no yet support geome-
try-based similarity search of 3D-objects. In comparison to
the available systems that support 2D spatial data, the 3D
data is much more complex. The currently most widely
used techniques for accessing database of complex objects
are feature-based approaches (e.g., [Fal94, MG 95])
which are mainly used as a simple filter to restrict the
search space. In case of our application, a useful feature
would be, for example, the volume of the objects or a fea-
ture vector containing the volumes of a pattern spectrum of
the objects [Kor 96]. Although filtering approaches can be
very effective, in our application they do not provide good



a. MRI Images b. Seg. Hippocampus

Figure 1: Image Seriesof MRI Images and the
Segmented Hippocampus

results since the volume of the patients with epilepsy do
not differ significantly. Thismeansthat afiltering based on
the volume would not reduce the search space signifi-
cantly. Instead, it may even prune objects with interesting
shapes away. A second approach which comes from the
area of pattern recognition is the similarity search of 3D
objects based on their 2D projections. Although thisis a
very interesting approach which has been used success-
fully in pattern recognition [NLH 88, SFA 90], it is not
very helpful for finding the differences of objects which
aregenerally similar asin our application.

Our new ideato solve the problem is to develop an index
structure which supports an efficient geometry-based simi-
larity search on large databases of 3D volume objects. The
new index structure usesthe actual geometry of thedataob-
jectsto support an efficient similarity search of the objects.
A problem of using theactual 3D geometry isthe complex-
ity of the 3D objects, whichisby far too complex to be di-
rectly stored in any index structure. A solution which has
also proven useful in the case of indexing extended 2D ob-
jectsisto use approximations of the objectsin theindex to
support an efficient pruning of irrelevant objects. Inthe 2D
case, complex polygonal objects are approximated, for ex-
ample, by minimal bounding rectanglesand stored inan R-
tree[Gut 84] or itsvariantssuch asthe R+-tree [ SRF 87] or
the R*-tree [BKSS 90]. The R-tree and its variants may be
seen as a generalization of the B-tree for the two-dimen-
sional case. Our new geometry-based similarity searchtree
(GSS-tree) may aso be seen as a generalization of the B-
tree and R-tree for the three-dimensional case. To effec-
tively support similarity queries, the GSS-tree however
uses more accurate approximations. Instead of the mini-
mum bounding rectangles of the R-tree, our geometry-
based similarity search tree therefore uses the Minimum
Surrounding Volume (MSV) and the Maximum Included
Volume (MIV) of the data objects as approximations.
Since the approximations themselves may be rather com-
plex, instead of using a single approximation in the GSS-
tree we use sets of hierarchical approximations which ap-
proximatethereal dataobject with increasing accuracy.

Therest of the paper is organized as follows. In section 2,
we formaly introduce the geometry-based similarity
search tree and as a prerequisite, the concept of hierarchi-

Figure 2: 3D Representation of the Segmented
Hippocampus (Multiple Voxels are combined into Cuboids)

cal approximations. In section 3, we then introduce two
instantiations of our general idea using cuboids and oc-
trees as approximations — the Cuboid Similarity Search
tree (cf. section 3.1) and the Octree Similarity Search tree
(cf. section 3.2). In section 4, we provide a performance
evaluation of the GSS-tree and section 5 provides conclu-
sions and directions for future research.

2 The Geometry-based Similarity Search Tree

Before defining the similarity search problem on 3D vol-
ume data, in this subsection we first introduce our voxel-
based definition of a 3D volume and the volume-based
similarity search problem.

2.1 Problem Definition
Definition 1: (Voxel-based 3D Volume)
In a three-dimensional discrete space with extensign \
Yimax* Zmax » @ 3D volumevol is defined as the set of vox-
els belonging to the volume

Vol = {(x,V,2)} where
O(x,y,2) DVol: 0SX<Xpa0 0SY <Yy, 0S2<7,,, and
O(Xq, Y10 21)s (X0, ¥, ) OVOI: (X4, Y1, Z1) ~n (X0 Y2, 2) .
The reIation~L is the transitive closure of the neighbor-
hood relation of voxels, which may be defined differently
depending on the application.

Definition 2: (Neighborhood Relation of degreed ~ )
The neighborhood relaticrmd of degked 0 {0, 1, 2})
may be defined as

(X1 Y12) N, (X2 ¥22Z) @ -
Xo=X <1 O |y,—yy <1 0|z,-2|<1
O%g=Xq| +[Y2=Y4| + |22 -2y =d.
The degree allows to specify different notions of neighbor-
hood relations and denotes whether the voxels must be di-
rect neighbors (degree 0), one-level diagonal neighbors
(degree 1) or two-level diagonal neighbors (degree 2). In
Figure 3a, the dark grey voxels are the voxels which are in
neighborhood relatiory , the medium grey voxels are in

a. Neighborhood Relation™ ; b. Neighborhood Relaltions",\l0

Figure 3: Neighborhood Relation



neighborhood refation ~ , andthelight grey voxelsarein Given a query volumes, find the volumesvol  from the
neighborhood relation ~ . In Figure 3b, the dark grey databaséB which is NN-similar tos with respect to
squares arein neighborhood relation ~ - of theblack mid- dyp » i.e. determine

dle square. Figure 3b also shows two example objects —{vol 0 DB| Dvol 0 DB, vol #vol: 3,5(s, vol) < &,p(s, vol)}
the upper fulfills definition 2 using the neighborhood rela-

tion ~  while the lower object would not be allowed using Note that finding all congruent volumes is a subtask of
the degree zero neighborhood relation. Due to the volumesolving thee -similarity oNN-similarity query task. This
properties of our medical volume objects, in our applica- means that any algorithm which solves the similarity
tion, it is appropriate to use-g, neighborhood relation. query must at least find all congruent volumes.

To def_me the similarity sea_rch task on 3[_)—\/_olume objects, 2.2 Hierarchical Approximations

we first need to define a similarity measure 14 sypport an efficient pruning in the GSS-tree, we use

&: Vol xVol -~ 0 which determines the volume differ- 4,4 types of approximations — the Minimum Included
ence between two volumes. Volume (MIV) approximation and the Maximum Sur-

Definition 3: (Smilarity Measure Volume Difference 6, ) rounding Volume (MSV) approximation. Using both
The similarity measured,,: Vol xVol -~ O  of two 3D types of approximations has several advantages: The most
volumesvol; andvol, may be defined as important advantage is that the pruning of irrelevant
[vol; n vol,| branches of the tree becomes more effective. This is im-
dyp(voly, voly) = 1_—HV0|1 Tvoly| portant not only in the search process, but also in inserting

new data objects. Using both approximations further pro-
where Vol denotes the volume coveredvoy. vides an additional criterion in guiding the search process,
Note that the denominator of the fraction is only necessarygallowing the algorithms to follow the more promising
for normalizing the resulting volume difference with re- pranches first. Note that MIV and MSV approximations
spect to the overall volume obl, andvol,. Instead of  are generalizations of conservative and progressive ap-
|vol; O voly|, other normalization factors such as proximations which have been successfully used for an ef-
max(||vol,||, [lvol ) or 0,5 [{|vol,| + |vol,|) may be used. ficient query processing in geographical databases
Definition 4: (Congruence, & -Similarity, NN-Similarity) _[BKS_ 93] gnd for S|m|Iar|_ty gueries on databases contain-
- ing high-dimensional point data [ABKS 98].
Two 3D volumesvol, are calleccongruent vol, = vol, T _
iff  &,4(vol,,vol,) =0 Definition 6: (Maximum Included Volume - M1V,
VD 1 2 : .. .
Minimum Surrounding Volume - MSV)
An approximation of a 3D volumel is called Maximum

Two 3D volumes/ol, andvol, are calleck —similar  with
respect ta®d,, iffd,p(voly, vol,) < € . X

. . Included VolumegMIV(voal)) iff
A 3D volumevol, is calledNN-similar to a given 3D &MIV(val))

volume vol, with respect to,, and a database of vol- MIV(vol) O vol andMIV(vol) is maximal for a given
umesDB iff type of approximation.

An approximation of a 3D volumel is called Minimum
Surrounding VolumgMSV(vol)) iff

The similarity measuré,, satisfies the properties of a vol O0MSV(vol) andMSV(vol) is minimal for a given
metric, which is expressed by the following lemma. type of approximation.

The maximality of the MIV and the minimality of the
MSV approximations depends on the type of approxima-

Ovol O DB: dyp(vol,, voly) < dyp(vol,, vol) .

Lemma 1: (Properties of the Smilarity Measure d,,5)

(1) identity-preservationtvol : 3,,5(vol, vol) = 0 tion used. Examples are provided in the description of the
(2) commutativity:Ovol, Ovol, : cuboid and octree instantiations (cf. section 3).

Syp(voly, vol,) = dp(vol,, vol ) In many cases, even a coarse approximation of a volume

(3) triangle inequationtvol , Ovol,,0vol 5 : which may be efficiently stored and processed may al-

dyp(voly, vol,) + &5 (vol,, volg) 2 3,5 (vol,, vol ;) ready allow a substantial pruning of the search space. In

] o order to make the similarity search more efficient, we
Up to now, we have only defined the similarity of two vol-  therefore use the concept of hierarchical approximations.

umes. The next step is to define a similarity query which The pasic idea of hierarchical approximations is to use sets
is searching a database of volumes for similar volumes.

Given a databasPB of n volumesvol;, the similarity
guery on volumes may be defined as follows.

Definition 5: (e -Smilarity Query, NN-Smilarity Query)
Given a query volums, find all volumesyol from the da- = =
tabaseDB which aree —similar ts with respect td,, a MIV Approximation b MSV Approximtion
i.e. determine{vol 0 DB| 3,5(s, vol) <&} . Figure 4: Example of MIV and M SV Approximation




of approximations which differ in their accuracy. In the
search process, we always use the |east accurate approxi-
mation which provides enough differentiation between the
volume objects, thereby reducing the storage overhead
and allowing fast comparisons due to the low complexity
of the volume objects involved.

Definition 7: (Hierarchical Approximation)
A sequence of MIV approximations MIV,(vol),
MIV,(vol), ..., MIV,(vol) of avolumevol iscalled a hier-
archical approximation iff

Oi = 1...k: MIV;(vol) OMIV,, 4(vol).
A sequence of MSV  approximations MSV,(vol),
MSV,(vol), ..., MSV,(vol) of avolumevol iscalled ahier-
archical approximation iff

0i = 1...k: MSV,, ;(vol) O MSV;(vol).

The definition of a hierarchical approximation impliesfor
a sequence of M1V approximations that

[MIVy(vol)| < [MIV,(vol)| < ... <[MIV,(vol)| <|lvol
and for a sequence of MSV approximations that

[MSV,(vol)| 2 [MSV,(vol)| 2 ... 2|MSV,(vol)| = |vol] .
Hierarchical approximations have someimportant proper-
ties which are used for pruning the search space in the
GSS-tree. The most important property directly follows
from the above observation and is summarized in the fol-
lowing lemma.

Lemma 2: (Monotonicity of Hierarchical Approximations)
The minimum overlap / union of asearch volume vol, and
hierarchical M1V approximationsis monotonoudly increas-
ing when going to more exact approximation levels, i.e.

Ovol Oi =1..k-1:

[MIVi(vol) n /O voly| < || MIV;, (vol) n/Ovol .

The maximum overlap / union of a search volume volg and
hierarchical M SV approximationsismonotonously decreas-
ing when going to more exact approximationlevels, i.e.

Ovol Oi =1...k-1:

| MSV(vol) n /O voly| = || MSV,, 4(vol) n /O vol.

Proof:

The lemma directly follows from the monotonicity prop-
erty of 0 and n aswell as || | and the definition of hier-
archical approximations. (1

A second property which is important for using the M1V
and MSV approximations of sets of volumesin the direc-
tory nodesis the following:

Lemma 3: (Monotonicity of Union and Intersection of
Hierarchical Approximations)

The intersection of the hierarchical MIV approximations

of a set of volumes VS, = {vol,, ...,vol} is monoto-

nously increasing when going to a more exact approxima-

tion level, i.e.

m m
OmOVS, Oi =1..k-1: A MIV(vol}) O A MIV,,,(vol,)
i=1 i=1
The union of the hierarchical MSV approximations of a
set of volumes VS, = {vol,, ...,vol .} is monotonously
decreasing when going to a more exact approximation
level,i.e.

m m
OmOVS, Oi=1.k-1: ] MSVi+1(von) U0 MSVi(von)
j:]_ j=1
| dea of the Proof:

Thelemma can be shown by induction over m, the number
of volumesin VS Details can be found in [Kei 97]. O

Examples of hierarchical approximations of volume data
are octree approximations and approximations by sets of
cuboids (cf. section 3).

2.3 Structure of the GSS-Tree

Theidea of the geometry-based similarity search treeisto
cluster similar objects (i.e., objects with a high volume
overlap) in data pages and store the MSV and MIV ap-
proximations of the objects in the directory pages. In the
directory, theMSVsand M1V sare combined (by union or
intersection) and stored on the next higher directory level.
The accuracy of the approximations stored in the directory
nodes is chosen as low as possible for the objects on the
next lower level to be discernible. This guarantees that
only the smallest amount of information possibleis stored
in each of the directory nodes and that the rather expensive
volume comparisons can be efficiently approximated. A
result, however, is that the accuracy of the approximation
may vary between different directory levels, and even on
the same directory level, nodes with a different accuracy
of the approximations are possible.

The GSS-tree is a completely dynamic height-balanced
treesimilar to the B-tree [BM 72] and the R-tree [Gut 84].
Theleaf nodes of the GSS-treeareall onthesamelevel and
contain (MIV, MSV)-pairs together with pointers to the
actual volume objects. The directory nodes contain (MI1V,
MSV)-pairs together with child pointers. Since MIV and
MSV approximationsof different accuracy levelsare used,
the fanout of a node is alowed to vary within certain
ranges. Also, the node sizeis not fixed but corresponds to
one or multiple adjacent disk pages. This is necessary to
prevent the tree from degenerating in case large approxi-
mations are necessary to distinguish the data objects.

To simplify the description of the GSS-tree, we use the
following notations: The terms MIViI and MSViI are used
to denote the hierarchical M1V and MSV approximation
of accuracy i ontreelevel |, wheretreelevel I=1istheroot
level. (Thetreelevel | isonly mentioned when necessary.)
To access the different parts of an node entry
e = (MIV;, MSV;, ptr), we write eMIV;, eMsV,, and
e.ptr. The MIV accuracy level AL, of the node e is
ALy v(e) =i and the MSV accuracy level is
ALy sv(e) = j. The GSS-tree may be formally defined as:



Definition 8: (Geometry-based Smilarity Search Tree)
The Geometry-based Similarity Search tree (GSS-tree) is
a tree consisting of data and directory nodes. The data
nodes contain entries of the form (M1v;, MSV;, obj-ptr)
and the directory nodes contain entries of the form
(M1V;, MSV;, child-node) . The GSS-tree satisfies the fol-
lowing properties:

1. Every data and directory node of a GSS-tree of order
m contains between m and 2 Cm entries unless it is the
root. The root contains between 1 and 2 Um entries.

2. Thenodesizeis variable and depends on the accuracy
level AL,,, and AL, of thenode. Let b(MIV,) denote
the number of bytes necessary to storean M1V approxima-
tion of accuracy level i, b(MSV)) the number of bytes for
an MSV approximation of accuracy level j, and b(ptr) the
number of bytes for the pointer ptr. For a node storing
(M1V;, MSV;, ptr) -tuples and a page size of p, the node
sizeis

x = {2 Cm (b(MIV;) + b(MSV)) + b(ptr))"
P
times the normal page size p.

3. For each entry (MIV;, MS\/]f, obj-ptr) in a leaf node
LN, MIV: and MSV: are the hierarchical approximations
of the data object, obj-ptr is pointing to. The accuracy
level i of the MIV approximations in a leaf node LN is
chosen such that

i:= MIN i De e, DLN: e MIV, 2, M1V}

and the accuracy level j of the MSV approximations is
chosen such that

= j'l/|1|.'>|k{j| Dey, e, DLN: €. MSV, # e, MSV;} .

4. For eachentry e = (MIV{, MSV]!A, child-node') inadi-
rectory node DN, MIV! is defined as

el.miv

eMIV =

el O e.child-nodée

where i is determined as

ir= MIN v ge e, 0DN: e MIV 2 e, MIV)
i= 1...MinALM|V

and MSV;' isdefined as

eI.MSVJ!+l

-
e.MS\/j 1= []
el O e.child-node’
wheref is determined as
ji= MIN " 45 te, e, 1DN: &,.MSV! # e, MV}
j=1...MinALy, o

MinAL,,,y iSthe minimum MIV accuracy level in DN

MinALy,y = MIN taL, (e))

and MinAL,,, istheminimumMSV accuracy level inDN

MinALyg, = MIN raL, s (e)) .

5. All leaves appear on the same level of the tree. O

Thefive properties of Definition 8 define the GSS-tree. In
analogy to the B-tree and R-tree, property one defines the
fanout of the tree which is between m and 2 Cim for all
nodes except the root node. Since the objects stored in the
nodes are hierarchical approximations, the node sizeisal-
lowed to be a multiple of the normal page size, which is
defined by property two. Property three and four define
the MIV and MSV approximations used as keys in the
tree. An MIV approximation on level | is the intersection
of all MIV approximationsin the corresponding childnode
on level (I+1) and the MSV approximation is the union of
all MSV approximation in the corresponding childnode on
level (I+1). The accuracy of the approximation is chosen
as low as possible aslong as the approximations stored in
the node remain different, but it is never increasing when
goingtoahigher level inthetree[level (I+1) tol]. Thelast
property states in anal ogy to the B-tree and R-tree that the
treeis height-balanced, which meansthat al leaves are on
the samelevel of thetree. Since the fanout of al nodes ex-
cept the root node is between m and 2 [m, the height of
the treeislimited by

1
[10G5m, 1(N+1) |€ HaggN) < ( Iogm+lg\%a +1
if N isthe number of volumes in the index. This means
that the length of one path in the treeis logarithmic in the
number of data objects.

In searching the GSS-tree for a given search object, we
need two variations of our similarity measures which al-
low usto traverse the tree and efficiently prune the search
space. Theidea is to define two similarity measures &\’
and .5 which provide alower and upper bound for 3,
of asearch object and al objects stored in some branch of
the tree. Let OS(e) refer to the set of objects stored in

branch e of thetree. 50n and 502" can be defined as:

Definition 9: (Minimum and Maximum Volume
Difference &5, and &)5)*

The minimum volume difference &, Vol x Node - [

of a 3D search volume vol, and the set of 3D volumes

0OS(e) stored in the subtree e may be defined as

min B [volgn e.MSV|
Bvo (volg ©) = 1= 0o Temiv]
The maximum volume difference 8,5 Vol x Node - O
of a 3D search volume vol, and the set of 3D volumes
0OS(e) stored in the subtree e may be defined as

1. Note that 5{%” and 5313)( can also be seen as an interval esti-
mate of 8, in the sense of interval arithmetic. Theorem 1 then
corresponds to the fundamental invariant of interval arithmetic.



max volgn e.MIV|
dyp (vol,e) =1 _—||V0|s 5 e.MS\/|| .
In the following lemma, we show the monotonicity of the
3yp and &5 similarity measures. Lemma4 together
with Lemma 2 and Lemma 3 are then the basis for Theo-
rem 1 which shows the important search tree property of
the GSS-tree. Aswe explain later, Theorem 1 isthe basis
for the correctness of our search algorithm.

Lemma 4: (Monotonicity of 80p' and 302*)

For 501" and &02* as defined by Definition 9 and a GSS-
tree as defined by Definition 8, the following monotonic-
ity propertieshold:
1. Monotonicity of &yp
Ovol, ODN OeO DN Oel Oe.child-node :
8o (vol, €) < Sup'(vol g el) .

2. Monotonicity of &,5°

Ovolg, ODN OeO DN Oel Oe.child-node:

3yp (vol, ) = 3y0"(volg el) .

Proof: see[Kei97]

Now we are able to show the important search tree prop-
erty of the GSS-tree which is expressed by the following
theorem.

Theorem 1: (Search Tree Property of the GSS-Tree)

For &y, and &,p" as defined by Definition 9 and a GSS-
tree as defined by Definition 8, the following search tree
property holds:

Ovol, ODN OeO DN Ovol O OS(e) :

8yp (volg, €) < &5 (volg vol) < 802" (vol €) .

Proof: see[Kei97]

Theorem 1 is of high relevance for the correctness of our
search algorithm. Theorem 1 implies that in the top-down
traversal of a path in the GSS-tree, the minimal and max-
imal similarity of the search object vol, and the objectsin
a subtree OS(e) converge against the actual similarity of
the search object vol, and the objects in the subtree
(vol 0 OS(e)) . This means that in following a path of the
tree, the search space may be restricted, which allows us
to reduce the number of potentially relevant objects.

The high storage requirements seem to be a major draw-
back of the GSS-tree since storing all hierarchical approx-
imations seems to be prohibitively expensive. The storage
reguirements, however, may be reduced considerably by
only storing the additional information of the M1V and
MSV approximations in going to a more accurate approx-
imation level. This can be done since

MIV; OMIV, "

12

0 Msv omsv *?
In 12

which holds due to property four of Definition 8,
Lemma 3, and due to the observation aready mentioned
in the proof of Lemma 4, namely that

ODN Oey, e, ODN: Level(e;) = Level(e,)
O ALyv(e) 2 ALy, (&)
ODN Oey, e, ODN: Level(e;) = Level(e,)
O ALysv(e)) 2 ALy gv(e))
Note that the idea of storing only the incremental changes
of the approximations rather than the full approximations
issimilar to the idea of prefix-trees. The benefit of apply-
ing the prefix idea in the GSS-tree, however, is much
higher due to the high storage requirements of the 3D ap-
proximations. Applying the prefix ideais possible because
of the properties of hierarchical approximations and the
properties of the GSS-tree.

Note also that the definition of the GSS-tree is indepen-
dent of the type of approximation used. Any hierarchical
MIV and MSV approximation may be used aslong it ful-
fills the requirements of Definition 6 and Definition 7.
Two specific instantiations of the GSS-tree which use
cuboids and octrees as approximations are the Cuboid
Similarity Search tree and the Octree Similarity Search
tree, which are described in section 3.

2.4 Search Algorithm

In searching for all data objects which are similar to a
given search volume volg, according to Definition 4 we
have to distinguish between ¢ -similarity and NN-similar-
ity. In case of €-similarity, the basic idea of the search a-
gorithm is to use the minimum and the maximum volume
difference (8yp (volg e) and 8yp (volg €)) to prune al
branches of the tree, of which the minimum volume differ-
ence is higher than the allowed volume difference (g).
The search starts in the root node and tries to prune as
many branches as possible. The branches of the tree which
cannot be pruned since their minimum volume difference
is smaller than the allowed volume difference are put into
alist of nodes to be searched in the remaining search pro-
cess. The objects belonging to nodes of which the maxi-
mum volume difference is smaller than the allowed vol-
ume difference are added to the result list.

In case of NN-similarity, instead of the maximum volume
difference e, the smallest volume difference found so far
in the search isused for pruning. The smallest volume dif-
ference which is aready found is denoted either by the
volume difference of the search volume vol, and some
volume vol in the database (3, (volg vol)) or by the
smallest maximum volume difference (8,5"(vol €)) of
the search volume vol and some node e. Again, all nodes
which cannot be pruned are put into alist of nodes to be
searched and heuristics are used to determine the most
promising node to be examined next. After choosing a
node, the list of nodes to be searched is pruned again and
the same processis repeated until the leaf level isreached.
In case of NN-similarity, the volume difference of data ob-



EpsilonSimilaritySearch (GSSTree *rootnode, VOL *search_vol, float epsilon,
SearchStrategy strategy, VollList *result)
{ ListOfTriples*SearchList;
float VolDiffMin, VolDiffMax, VolDiff;

SearchList = (J; SearchList->append(rootnode, 0, Volume (DS));
for (n = SearchList->GetFirst(); n!= NULL; n = SearchList->GetFirst())
{ SearchList->RemoveFirst();
for (e = n->GetFirstChild(); e!= NULL; e = n->GetNextChild())
{ if (e==leafnode)
{ VolDiff = 1- (Volume(e->obj-ptr n search_vol)/
Volume(e->obj-ptr O search_vol));
if (VolDiff <= epsilon)
result->append(e);
} else{VoIDiffMin = 1- ((Volume(e->MSV n search_vol)/
Volume(e->MIV O search_voal));
VolDiffMax = 1- ((Volume(e->MIV n search_vol)/
Volume(e->MSV [ search_val));
if (VolDiffMin <= epsilon)
SearchList->append(e, VolDiffMin, Vol DiffMax);
if (VolDiffMax <= epsilon)
for (0 = e->GetFirstChild(); o != NULL; i = o->GetNextChild())
result->append(0);
}

}
Sort(SearchList, strategy);
}

}

Figure5: ¢-Similarity Search Algorithm

jects is also used for pruning the list. The search process
ends if al nodes which possibly contain similar data ob-
jects are removed from the search list and the most similar
data object is found. If more than one nearest neighbor is
searched for, the search ends after the desired number of
nearest neighbors has been found. Theimplementation de-
tails of the algorithm and other important algorithms of the
GSS-tree (such astheinsertion algorithm) can be found in
[Kei 97].

3 Instantiations of the GSS-Tree

The GSS-tree is a generic geometry-based index structure
which can be instantiated using different hierarchical ap-
proximations. In the following, we present two different
instantiations — the cuboid similarity search tree and the
octree similarity search tree.

3.1 The Cuboid Similarity Search Tree

An instantiation of the GSS-tree which may be seen as an

extension of the rectangular approximation of 2D objects
in the R-tree is the usage of cuboid approximations of the
3D volume objects. The idea of the Cuboid Similarity

Search tree (CSS-tree) is to define the hierarchical MIV
and MSV approximations by sets of cuboids. The MIV ap-

proximations are defined as sets of additive cuboids and

MSV approximations are defined as sets of subtractive
cuboids Additive means that the MIV approximations are
defined as the union of a set of adjacent non-overlapping
cuboids; andubtractive means that the MSV approxima-
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Figure 6: Hierarchical Cuboid M1V and MSV Apprs

rate MSV approximation, additional cuboids are sub-
tracted from the data space.

Definition 10: (Cuboid MIV and MSV Approximations)
The hierarchical cuboill | V approximations of a 3D vol-
umeVol are defined as sets of cuboid volumes.Mhg
approximation of levelis defined inductively by cuboid
volumes{C,, ...,C;} :
MIV, := C;
where Voln C; =C; O OC#Cy: HC1H =>|C|
MIV; = MIV,_; O C,
where O(Xy, Y1, Z1), (X5, Yo, Z5) OMIV;:
(X1, Y1, Zl)"':\l(xza Yo Z,)
0 (Vol=MIV,_;)n C;=C,
0 oc=cC: g =Icl
The hierarchical cuboidM SV approximations of a 3D
volume Vol are defined as sets of cuboid volumes. The
MSV; approximation of level is defined inductively by
the data spacBS  minusuboid volumegC,, ..., C;}
MSV, := DS-C,
where Vol n C; =0 0 OC#Cy: |Cyf 2C]
MSV, := MSV,_;-C,
where (MSV,_;-Vol) n C; =C,
0 0c=C: ¢ 2Icl.

In Figure 6, multiple levels of hierarchical cuboid MIV
and MSV approximations are presented. In the following,
we have to show that the approximations defined in Defi-
nition 10 are hierarchical MIV and MSV approximations
according to Definition 6 and Definition 7, since the cor-
rectness of the GSS search tree (cf. Theorem 1) requires
the approximations to fulfill these properties.

Lemma 5: (Cuboid MIV and MSV Apprsare Hierarchical Appr)

tions are defined as the data space minus a set of non-ovelrhe cuboid approximations are hierarchical MIV and
lapping cuboids. For a more accurate MIV approximation, MSV approximations according to Definition 6 and Defi-
additional cuboids are used in the union; for a more accu-nition 7.
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The MIV approximations are hierarchical since the union
operation can only provide larger MIVs (for i - i+1) D
and the MSV approximations are hierarchical since the
minus operations can only provide smaller MSVs (for
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the search algorithm presented in subsection 2.4, it guar-

antees the correctness of the CSS-tree, i.e. that no false D
dismissals occur in the search process. Note that for the .
proof and therefore also for the correctness of our ap- '
proach, we do not need the minimality and adjacency re-
quirement of Definition 10. The minimality requirement is
important to guarantee the best possible performance, and

vy

Figure 7: Example of the CSS-Tree

Lemma’5 isimportant since together with Theorem 1 and . '.
\|

the adjacency requirement is important to guarantee that level. On the first level of the tree, for example, the accu-
the M1V approximationsarestill 3D volumes according to racy level of the left node is two whereas the accuracy
Definition 1. Both requirements, however, may be relaxed level of the right node is three. In searching for all objects
without losing the correctness. which are volume-similar to the given search object, the
There are a number of algorithms which are necessary to dyp anddyp" of the search object and the hierarchical ap-
implement the CSS-tree. For the generic insert and search proximations stored in the nodes have to be calculated. In
agorithms presented in 2.4, we need efficient implemen- the example, only the nodes with the grey background
tations for determining the hierarchical cuboid M1V and (right-most path of the tree) have to be visited.

MSV approximationsand for calculating the union and in- 3.2 The Octree Similarity Search Tree

tersection of sets of cuboids. For determining the hierar- A second instantiation of the GSS-tree is the Octree Sim-
chical MIV and MSV approximations, the basic ideais to ilarity Search Tree (OSS-tree). The OSS-tree uses octrees
recursively determine the voxel of maximal intersection as hierarchical MIV and MSV approximations and can

and the portion of the volume which is ‘reachable’ from therefore be seen as a combination of the concepts of the
this point — called the quasi-convex hull. The quasi-con- R-tree and the Octree. The octree provides an efficient
vex hull is then the basis for determining the maximal representation of volume data and is therefore widely used
cuboid that fits into the remaining volume. The complex- for storing and processing volume data (a detailed descrip-
ity of the heuristics-based algorithmag|vol|) . Since the tjgn can be found in [Sam 90a] and [Sam 90b]). The oc-
algorithms work on the voxel-based representations of theyree is based on the principle of a recursive decomposition
volumes and are therefore more graphics-related, for de-of space. The basic idea is to successively subdivide a
tails the reader is referred to [Kei 97]. three-dimensional bounded voxel array into eight equal-
For a better understanding of the CSS-tree, in Figure 7 wesjzed octants. If the volume does not cover an entire oc-
show a simple two-dimensional CSS-tree which results tant, the octant is divided into suboctants until blocks are
from inserting eight objects. The order of the tree is 1 obtained that are entirely covered by the volume or by
and each node of the tree is completely filled vatim empty space. For our purpose of using the octree as hier-
objects. In Figure 7, the MIV and MSV approximations of archical approximations in the OSS-tree, we use the stan-
the two entries in each node are shown. Note that in casejard octree which is also referred to as region octree.

of the MSV approximations, only the cuboids are Shown; rq jefining the hierarchical octree approximations, we
the actual MSV approximations are defineddminus gt neeq to introduce a formal definition of the octree
the shown cuboids. The accuracy level of the nodes Whlchrepresentation of a volume.

corresponds to the number of cuboids used to approximate

the objects in the considered subtree is increasing in topDefinition 11: (Octree of a Volume)

down direction of the tree. Note that different accuracy A (standard) octree representation of a volurleis a
levels may be used for different nodes on the same treenon-balanced tree. A nodef the octree is defined by



the tree level (denoted bylevel 0{0...k} ),
« the portion of space representednby [ ] '
(denoted byn.oct), and

the node type (denoted ytype O {b,w, g} ),

« for nodes of typg, the eight son nodes ' ' ‘
(denoted byn.gi], i = 1..8).

Let Nodes be the set of all nodes on leteThe octree is

defined by
1. the rootnode:

*

aMIV b. MSV
Figure 8: Hierarchical Quadtree M1V and MSV Apprs

rootnode.level = 0 varying resolution where the nodes of typare replaced
rootnode.oct = DS by nodes of typev. The M1V, approximation of levelis
0 defined as:
b if vol =DS — n.oct | n.type=b
rootnode.type = %w if vol = O Miv, = \_J {| | n.type = b}
a nOd g Nodes
0g else 1=0...i
2. the other nodes: The hierarchical octrel SV approximations of a 3D vol-
OnONodes : ntype=g 0O n.i] = node, ume Vol are defined as a set of octree approximations of
(i=1..8,120) varying resolution where the nodes of typare replaced
where node level = | +1 by _nodes of typé. The MSv; approximation of levelis
! defined as

node,.oct = Octant(n.oct, i)
M8V, := U {n.oct | n.type=Db

E b if (node.octOvol) nlD:g”l?lodesl 0 (nlevel =i O n.type=g)}
node,.type = Hw if (vol n node.oct=0) -
Og else In Figure 8, we present a two-dimensional example of

rqnultiple levels of hierarchical quadtree MIV and MSV ap-
proximations (quadtrees are the 2D equivalent of the
three-dimensional octrees). In the following, we have to
show that the approximations defined in Definition 12 are
hierarchical MIV and MSV approximations according to
Definition 6 and Definition 7, since the correctness of the
GSS search tree (cf. Theorem 1) requires the approxima-
tions to fulfill these properties.

Note that the octree may be seen as a variable resolutio
data structure. If we want a lower resolution representa-
tion of the considered volume, we may simply use only the
lower levels of the octree. According to a theorem from
[Sam 90a], the size of an octree is proportional to the sum
of the resolutionres) and the size of the boundary of the
object (vol® , i.e. both, the storage complexity as well as
the complexity of several algorithmsd):{volb +res) .The

advantages of the octree are therefore twofold: The Stor'Lemma6: (OctreeMIV and MSV Apprsare Hierarchical Appr)

age and processing requirements in using an octree P e octree MIV and MSV approximations are hierarchical

sentation of a yolume are only proportional to the 2[.) SU™ MIV and MsV approximations according to Definition 6
face of the object instead of the 3D volume object itself, and Definition 7

and second, the octree provides a variable resolution rep-

resentation of the volume without inducing additional |dea of the Proof:

storage or processing costs. The proof thatlj: MIV,0Vol 0 Vol OMSV; can be
The first property is important to obtain efficient algo- done based on Definition 12 by induction ojkérhe proof
rithms for the union and intersection of two volumes and that the MIV and MSV approximations are hierarchical
their approximations. The second property is important (i.e., Oi: MIV,OMIV,,,; O MSV,,,;0MSV;) can be
for our definition of the hierarchical MIV and MSV ap- shown by induction over A formal proof is provided in
proximations. The basic idea of the MIV approximation is [Kei 97]. O

to modify the octree such that the nodes with typee set | emma 6 is important since together with Theorem 1 and
to typew. This may be applied to an octree of an arbitrary the search algorithm presented in subsection 2.4, it guar-
resolution and thereby we obtain a sequence of MIV ap-antees the correctness of the OSS-tree, i.e. that no false
proximation. For defining the hierarchical MSV approxi- dismissals occur in the searching process.

of typeg are replaced by nodes of type implement the OSS-tree. For the generic insert and search
Definition 12: (Octree MIV and MSV Approximations) algorithms presented in subsection 2.4, we need efficient
The hierarchical octreld | V approximations of a 3D vol-  implementations for determining the hierarchical octree

ume Vol are defined as a set of octree approximations ofMIV and MSV approximations and for calculating the
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Figure9: Example of the OSS-Tree

union and intersection of octree MIV and MSV approxi-
mations. The algorithms for determining an octree repre-
sentation of avolume aswell asthe union and intersection
algorithms are similar to those presented in the literature
(e.g., [Sam 90a]) and are therefore not discussed here.
For abetter understanding of the OSS, in Figure 9 we show
asimpletwo-dimensional OSS-tree which resultsfromin-
serting eight objects. For simplicity, in the example al
nodeshavethesameaccuracy level. In searchingfor al ob-
jectswhich are volume-similar to the given search object,
the &, and 85" of the search object and the hierarchical
approximations stored in the nodes have to be calculated.
In the example, only the nodes with the grey background
(right-most path of the tree) have to be visited.

4 Experimental Evaluation

To show the practical relevance of our method, we per-
formed an experimental evaluation the GSS-tree and its
two instantiations (CSS-tree and OSS-tree). We also com-
pared the performance results to the currently used
method which is a direct volume-based search. All exper-
imental results presented in this section are computed on a
64-bit HPC160 workstation with a few hundred MBytes
of main memory and several GBytes of secondary storage.
The prototype of the GSS-tree has been implemented in
C++ as templates to support different hierarchical MIV
and MSV approximations of the data objects. The imple-
mentation details can be found in [Kel 97].

For our experiments, we used arealistic dataset consisting
of real medical hippocampi volumes obtained from our
medical partners. The data objects have a resolution of
64 x 64 x 16 voxels, which is given by the medical image
generation and segmentation process. Dueto the problems

b. Query Results
Figure 10: NN-Similarity Query and Results (Data Set 1)

with an automatic segmentation of medical images, how-
ever, the data set was originally rather small. Since the ad-
vances in medical imaging and (semi-)automatic segmen-
tation will soon produce much larger data sets, for amore
realistic performance evaluation and to obtain a variable
size database (needed for the experiments depending on
the size of the database), we extended the real data set by
modifying the data objects as redlistically as possible and
added the modified data objects to the data set. The mod-
ification has been done by adding sphere-shaped regions
at randomly generated boundary voxelsof theoriginal vol-
ume. As a result, we obtain a data base with between 10
and 800 volume objects.

4.1 Evaluation of the Effectiveness

In contrast to feature-based approaches to similarity
search, the effectiveness of our geometry-based approach
with respect to the given similarity measure can be fully
guaranteed (cf. Theorem 1 in section 2.3). This meansthat
our similarity search tree guarantees to find exactly the
data objects which fulfill the given volume similarity mea-
sure. Nevertheless, for the medical scientistsit isinterest-
ing to compare the results of our similarity search to their
expectations. This is useful to validate and improve the
similarity measure. In Figure 10, we show one search ob-
ject together with two NN-similar result objects which are
determined by the CSS-tree and OSS-tree. In Figure 11,
we present a query objects together with four € -similar
result objects. The representation shows the objects in
their cuboid representation and uses two light sources to
enable a limited form of a 3D view. Due to the limits of

b. Query Results

Figure1l: ¢ -Similarity Query and Results (Data Set 2)
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Figure 12: Total Search Time of NN-Similarity Queries

the 2D representation, the 3D shapes of the objects are till
difficult to discern. The jaggedness of the representationis
due to the limitations of the original data which comes
from the voxel-based representation of limited resolution.

4.2 Evaluation of the Efficiency

From a database perspective more important than the ef-
fectivenessisthe efficiency of our approach. In Figure 12,
we show thetotal search time (in seconds) for NN-similar-
ity queries depending on the number of data objects. As
expected, for both the CSS-tree and OSS-tree, the search
time is sublinear in the number of data objects. In Figure
12, we also show thetotal search time of the volume-based
filtering approach. The basic idea of volume-based filter-
ing isto store the total volume of all data objectsin a one-
dimensional datastructure (e.g., a B-tree) and usethe total
volume of the search object to restrict the search to a cer-
tain volume range resulting in a set of potentially relevant
objects. Thisset isthen scanned linearly and in the refine-
ment step, each object is intersected with the search ob-
ject. The total search time for the volume-based filtering
approach is dominated by the timefor the time-consuming
intersection tests in the refinement step. If the filtering se-
lectivity is constant, the number of objects to be tested in
the refinement step increases linearly with the number of
data objects in the database (cf. Figure 12). For some ap-
plications such asthe one described in [Kor 96], avolume-
based filtering approach provides good results since the
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Figure 13: Speed-Up over Volume-based Similarity Search
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Figure 14: Comparison of Pages Accesses and CPU-Time

filtering selectivity is high. If the volume of all data ob-

jects in the database is in a rather small range, however,

the selectivity of volume-based filtering is poor since in

the refinement step almost the whole database has to be
scanned and the time-consuming intersection test hasto be
performed for each database object. In our database of
hippocampi, the objectsare al pretty similar and their vol -

ume isin a small range since the objects are normalized.

The performance of the volume-based filtering is there-

fore rather bad compared to both — the CSS-tree and the
OSS-tree. In Figure 13, we show the speed-up of the CSS-
tree and the OSS-tree over the volume-based filtering ap-
proach. Since volume-based filtering is almost linedt in
and CSS-tree and OSS-tree are sublinedt, ihe speed-

up increases with increasihg

In Figure 14, we provide a more detailed analysis of the
CSS-tree and the OSS-tree. We compare the number of
page accesskand the CPU-time (in seconds). As ex-
pected, the CPU-time of the CSS-tree is much higher since

Vel T B

[T = LE

Figure 15: Comparison of CSS- and OSS-tree (Data Set 2)



theintersection and union of sets of cuboidsis much more
time-consuming than the intersection and union of MIV
and MSV octree approximations. On the other hand, the
precision of the cuboid approximations is better, which
leads to a better pruning of nodes early in the search pro-
cess and therefore alower number of page accesses. Fig-
ure 14 clearly shows the advantages and disadvantages of
CSS-tree and OSS-tree: The CSS-tree provides a better
filtering and therefore less node accesses, but the intersec-
tion and union operations on sets of cuboids are more
time-consuming. In contrast, the OSS-tree provides fast
intersection and union operations, but due to the fixed
space partitioning of the octree the approximations are of
less precision and therefore more node accesses are neces-
sary. The usefulness of the octree partitioning scheme,
however, is data-dependent and therefore, a general state-
ment, which of the instantiations (CSS-tree or OSS-tree)
provides a better performance, is not possible. To show
the advantage of the CSS-tree over the OSS-tree, we gen-
erated a second slightly different data set. In data set two,
the likelihood that the partitioning scheme of the octree
provides a suboptimal partitioning is higher. In Figure 15,
we present the performance result of the CSS-tree and
OSS-tree. In this case, the performance of the CSS-treeis
better than the performance of the OSS-tree.

5 Conclusions

The main contribution of the paper is a new geometry-
based index structure which generalizes the well-known
R-tree approach for an efficient volume-based similarity
search on 3D volume objects. Our solution is based on the
general concept of using both, progressive (MI1V) and con-
servative (M SV) approximations, and the concept of using
a hierarchy of approximations. The approximations are
used to define a minimum and maximum volume differ-
ence measure which is formally shown to be correct and
alows an efficient pruning of the search space. We devel-
oped two instantiations of our geometry-based index
structure, which are based on cuboid and octree approxi-
mations. The practical relevance and feasibility of our ap-
proach is shown by applying our new techniques to the
real datafrom our medical applications. Our experimental
evaluation of the two variants of the GSS-tree reveals sig-
nificant performance improvements over existing ap-
proaches. Although the GSS-tree has been devel oped with
our medical application in mind, it is generally applicable
in awide range of other applications.

There are a number of open research directions and a lot

of futurework to do: Other M1V and M SV approximations
need to be explored and more experience needs to be col-

1. Note that for a fair comparison, the number of page accesses is
determined from the number of node accesses by weighting
each node access with the size of the node. The weighting corre-
sponds to the time needed to load the node.

lected by applying the GSS-tree in other application con-
texts, some of which may require an extension of the GSS-
tree to allow a similarity search under other invariances.
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